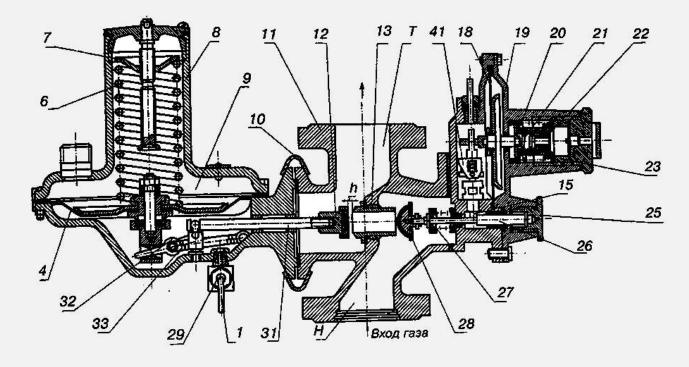
по вопросам продаж и поддержки обращайтесь:


Астана +7(77172)727-132, Волгоград (844)278-03-48, Воронеж (473)204-51-73, Екатеринбург (343)384-55-89, Казань (843)206-01-48, Краснодар (861)203-40-90, Красноярск (391)204-63-61, Москва (495)268-04-70, Нижний Новгород (831)429-08-12, Новосибирск (383)227-86-73, Ростов-на-Дону (863)308-18-15, Самара (846)206-03-16, Санкт-Петербург (812)309-46-40, Саратов (845)249-38-78, Уфа (347)229-48-12

единый адрес для всех регионов: akg@nt-rt.ru адрес сайта: www.aktion.nt-rt.ru

Технические характеристики РДНК-400(400M, 1000, У)

параметры	РДНК-400	РДНК-400М РДНК-1000	РДНК-У
Регулируемая среда	Природный газ по ГОСТ 5542-87		
Рабочий диапазон выходных давлений, МПа.	0,0050,6 0,051,2		0,051,2
Диапазон настройки выходного давления кПа.	2,05,0		
Давление срабатывания сбросного клапана ПСК кПа.	(1,101,80) Рвых.		
Давление срабатывания автоматического отключающего устройства, кПа при повышении выходного давления - при понижении выходного давления	(1,201,80) Рвых. (0,200,50) Рвых.		
Присоединительные размеры: условный проход Ду, мм входного патрубка - выходного патрубка - вид соединения	50 50 Фланцевое по ГОСТ 12820		
Габаритные размеры, мм: - длина - ширина - высота	512 220 270		
Строительные размеры, мм.	170		
Масса, кг. не более	8		
Неравномерность регулирования выходного давления, %	± 10		
Коэффициент чувствительности выходного давления к изменению входного, кПа/кгс/см², не более	0,15		

Значение	Наибольшая пропускная способность Qнаиб. м³/ч				
Рвх. МПа.	РДНК — 400	РДНК — 1000	РДНК — 400М	РДНК - У	
0,05	45	70	55	55	
0,1	8	130	100	100	
0,2	125	280	180	175	
0,3	170	450	300	250	
0,4	200	600	400	330	
0,5	250	700	500	410	
0,6	300	900	600	500	
0,9	-	-	-	750	
1,2	-	-	-	1000	

h
3,8±0,1
4,2±0,2
2,1±0,1

Рис. 1

1-импульсная трубка; 6,20,21,27,33 — пружины; 4, 18- мембраны; 7 — нажимная гайка;8 — стакан; 9 — мембранная камера; 10 — хомут; 11 — корпус; 12 — рабочий клапан;13 — седло; Т — выходной патрубок; 15 — фиксатор; 19 — отключающее устройство;22,23 — регулировочные гайки; 26,31 — штоки; 25 — пробка; 28 — отсечной клапан;29 — тройник; Н — входной патрубок; 32 — рычажный механизм; 41 — исполнительный механизм.

Конструкция регулятора РДНК — 400 показана на рисунках 1, 2, РДНК — 1000 (400M) на рисунке 1, РДНК — У на рисунках 1, 3.

В корпусе 11 запрессовано седло 13 рабочего клапана 12, одновременно являющееся седлом отсечного клапана 28.

Рабочий клапан посредством штока 31 и рычажного механизма 32 соединён с рабочей мембраной 4.

Настройка выходного давления регулятора осуществляется с помощью сменной пружины 6 и нажимной гайки 7.

Для регулятора РДНК — 400 в центре рабочей мембраны 4 установлен предохранительный сбросной клапан 38, который настраивается с помощью пружины 39 и гайки 40 (рисунок 2).

Отключающее устройство имеет мембрану 18, связанную с исполнительным механизмом 41, фиксатор 15 которого удерживает отсечной клапан 28 в открытом положении.

Настройка отключающего устройства производится сменными пружинами 20 и 21 с помощью регулировочных гаек 22 и 23.

1.4.2 Подаваемый к регулятору газ среднего или высокого давления проходит через входной патрубок Н и, проходя через щель между рабочим клапаном 12 и седлом 13, редуцируется до низкого давления и через выходной патрубок Т поступает к потребителю.

Импульс выходного давления по трубопроводу поступает из выходного трубопровода в подмембранную полость регулятора, которая в свою очередь, соединена трубопроводом с подмембранной полостью отключающего устройства.

В случае повышения давления на выходе регулятора РДНК — 400 до величины указанной в таблице 1 пункт 4, открывается сбросной клапан 38, обеспечивая сброс газа в атмосферу через свечу. В случае, когда перед выходным краном предусмотрено самостоятельное сбросное устройство, возможно исключение работы сбросного клапана регулятора путём затяжки пружины поз. 39 в соответствии с рисунком 2.

При повышении или снижении выходного давления от величины настройки отключающего устройства таблица 1 пункт 5 фиксатор 15 усилием на мембране 18 выводится из зацепления и клапан 28, под действием пружины 27 закрывает седло 12, поступление газа прекращается.

Пуск регулятора в работу производится при давлении настройки, Рвых. вручную после устранения причин, вызвавших срабатывание отключающего устройства.

Для этого вывёртывается пробка 25 и плавно перемещается шток 26 до того момента, когда за его выступ западает конец фиксатора 15. Этот момент определяется на слух по характерному щелчку. Затем пробка 25 устанавливается на место и заворачивается до упора.

Для уменьшения влияния расхода на выходное давление в конструкции регуляторов РДНК — У, РДНК — 1000, РДНК — 400М, предусмотрен компенсирующий узел с пружинами 33 в соответствии с рисунком 1, а в

РДНК — У дополнительно к компенсирующему узлу ту же функцию выполняет узел разгрузки 43 в соответствии с рисунком 3.

В связи с возможными работами по совершенствованию регуляторов могут быть внесены изменения, не отражённые в данной редакции РЭ.